Implement FastAPI MCP zero-config integration

- Add fastapi_mcp to provide automatic MCP tooling from API endpoints
- Create MCP request/response schema models
- Update main.py to initialize FastAPI MCP with zero config
- Add comprehensive MCP integration documentation
- Update README with zero-config MCP integration information

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
2025-04-15 11:50:55 +07:00
parent 403fa50b4f
commit ba9201dfa6
5 changed files with 250 additions and 87 deletions

135
MCP_INTEGRATION.md Normal file
View File

@ -0,0 +1,135 @@
# MCP Integration Guide
Nomad MCP provides seamless integration with AI assistants through the Model Context Protocol (MCP), enabling AI agents to interact with your Nomad cluster directly.
## What is the Model Context Protocol (MCP)?
The Model Context Protocol (MCP) is a standardized way for AI agents to interact with external tools and services. It allows AI models to call specific functions and receive structured responses, which they can then incorporate into their reasoning and responses.
## Zero-Config MCP Integration
Nomad MCP uses FastAPI MCP to automatically expose all API endpoints as MCP tools with zero configuration. This means that all endpoints in the REST API are immediately available as MCP tools without any manual definition or configuration.
### Connection Endpoint
AI assistants can connect to the MCP endpoint at:
```
http://your-server:8000/mcp/sse
```
The SSE (Server-Sent Events) transport is used for communication between the AI agent and the MCP server.
### Available Tools
All the endpoints in the following routers are automatically exposed as MCP tools:
- **Jobs**: Managing Nomad jobs (start, stop, restart, etc.)
- **Logs**: Retrieving job and allocation logs
- **Configs**: Managing job configurations
- **Repositories**: Working with code repositories
Each endpoint is converted to an MCP tool with:
- Proper parameter validation
- Detailed descriptions
- Type information
- Example values
### Example MCP Interactions
Here are some examples of how an AI agent might use the MCP tools:
#### Listing Jobs
```json
{
"type": "tool_call",
"content": {
"name": "list_jobs",
"parameters": {
"namespace": "development"
}
}
}
```
#### Getting Job Status
```json
{
"type": "tool_call",
"content": {
"name": "get_job_status",
"parameters": {
"job_id": "my-service"
}
}
}
```
#### Starting a Job
```json
{
"type": "tool_call",
"content": {
"name": "start_job",
"parameters": {
"job_id": "my-service",
"namespace": "development"
}
}
}
```
## Setting Up Claude with MCP
### Claude Code Integration
Claude Code can directly connect to the MCP endpoint at `http://your-server:8000/mcp/sse`. Use the `--mcp-url` flag when starting Claude Code:
```bash
claude-code --mcp-url http://your-server:8000/mcp/sse
```
### Claude API Integration
For integration with the Claude API, you can use the MCP toolchain configuration provided in the `claude_nomad_tool.json` file.
See the [Claude API Integration Documentation](CLAUDE_API_INTEGRATION.md) for more detailed instructions.
## Debugging MCP Connections
If you're having issues with MCP connections:
1. Check the server logs for connection attempts and errors
2. Verify that the `BASE_URL` environment variable is correctly set
3. Ensure the AI agent has network access to the MCP endpoint
4. Check that the correct MCP endpoint URL is being used
5. Verify the AI agent supports the SSE transport for MCP
## Custom Tool Configurations
While the zero-config approach automatically exposes all endpoints, you can customize the MCP tools by modifying the FastAPI MCP initialization in `app/main.py`:
```python
mcp = FastApiMCP(
app,
base_url=base_url,
name="Nomad MCP Tools",
description="Tools for managing Nomad jobs via MCP protocol",
include_tags=["jobs", "logs", "configs", "repositories"],
# Add custom configurations here
)
```
## Security Considerations
The MCP endpoint provides powerful capabilities for managing your Nomad cluster. Consider implementing:
1. Authentication for the MCP endpoint
2. Proper network isolation
3. Role-based access control
4. Audit logging for MCP interactions
By default, the MCP endpoint is accessible without authentication. In production environments, you should implement appropriate security measures.

BIN
README.md

Binary file not shown.

View File

@ -4,10 +4,12 @@ from fastapi.staticfiles import StaticFiles
import os import os
import logging import logging
from dotenv import load_dotenv from dotenv import load_dotenv
from fastapi_mcp import FastApiMCP
from app.routers import jobs, logs, configs, repositories, claude from app.routers import jobs, logs, configs, repositories, claude
from app.services.nomad_client import get_nomad_client from app.services.nomad_client import get_nomad_client
from app.services.gitea_client import GiteaClient from app.services.gitea_client import GiteaClient
from app.schemas.claude_api import McpRequest, McpResponse
# Load environment variables # Load environment variables
load_dotenv() load_dotenv()
@ -42,6 +44,17 @@ app.include_router(configs.router, prefix="/api/configs", tags=["configs"])
app.include_router(repositories.router, prefix="/api/repositories", tags=["repositories"]) app.include_router(repositories.router, prefix="/api/repositories", tags=["repositories"])
app.include_router(claude.router, prefix="/api/claude", tags=["claude"]) app.include_router(claude.router, prefix="/api/claude", tags=["claude"])
# Initialize the FastAPI MCP
base_url = os.getenv("BASE_URL", "http://localhost:8000")
mcp = FastApiMCP(
app,
base_url=base_url,
name="Nomad MCP Tools",
description="Tools for managing Nomad jobs via MCP protocol",
include_tags=["jobs", "logs", "configs", "repositories"],
)
mcp.mount()
@app.get("/api/health", tags=["health"]) @app.get("/api/health", tags=["health"])
async def health_check(): async def health_check():
"""Health check endpoint.""" """Health check endpoint."""

View File

@ -1,78 +1,92 @@
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from typing import Dict, Any, List, Optional, Union from typing import Dict, Any, List, Optional, Union
class ClaudeJobRequest(BaseModel): class ClaudeJobRequest(BaseModel):
"""Request model for Claude to start or manage a job""" """Request model for Claude to start or manage a job"""
job_id: str = Field(..., description="The ID of the job to manage") job_id: str = Field(..., description="The ID of the job to manage")
action: str = Field(..., description="Action to perform: start, stop, restart, status") action: str = Field(..., description="Action to perform: start, stop, restart, status")
namespace: Optional[str] = Field("development", description="Nomad namespace") namespace: Optional[str] = Field("development", description="Nomad namespace")
purge: Optional[bool] = Field(False, description="Whether to purge the job when stopping") purge: Optional[bool] = Field(False, description="Whether to purge the job when stopping")
class ClaudeJobSpecification(BaseModel): class ClaudeJobSpecification(BaseModel):
"""Simplified job specification for Claude to create a new job""" """Simplified job specification for Claude to create a new job"""
job_id: str = Field(..., description="The ID for the new job") job_id: str = Field(..., description="The ID for the new job")
name: Optional[str] = Field(None, description="Name of the job (defaults to job_id)") name: Optional[str] = Field(None, description="Name of the job (defaults to job_id)")
type: str = Field("service", description="Job type: service, batch, or system") type: str = Field("service", description="Job type: service, batch, or system")
datacenters: List[str] = Field(["jm"], description="List of datacenters") datacenters: List[str] = Field(["jm"], description="List of datacenters")
namespace: str = Field("development", description="Nomad namespace") namespace: str = Field("development", description="Nomad namespace")
docker_image: str = Field(..., description="Docker image to run") docker_image: str = Field(..., description="Docker image to run")
count: int = Field(1, description="Number of instances to run") count: int = Field(1, description="Number of instances to run")
cpu: int = Field(100, description="CPU resources in MHz") cpu: int = Field(100, description="CPU resources in MHz")
memory: int = Field(128, description="Memory in MB") memory: int = Field(128, description="Memory in MB")
ports: Optional[List[Dict[str, Any]]] = Field(None, description="Port mappings") ports: Optional[List[Dict[str, Any]]] = Field(None, description="Port mappings")
env_vars: Optional[Dict[str, str]] = Field(None, description="Environment variables") env_vars: Optional[Dict[str, str]] = Field(None, description="Environment variables")
def to_nomad_job_spec(self) -> Dict[str, Any]: def to_nomad_job_spec(self) -> Dict[str, Any]:
"""Convert to Nomad job specification format""" """Convert to Nomad job specification format"""
# Create a task with the specified Docker image # Create a task with the specified Docker image
task = { task = {
"Name": "app", "Name": "app",
"Driver": "docker", "Driver": "docker",
"Config": { "Config": {
"image": self.docker_image, "image": self.docker_image,
}, },
"Resources": { "Resources": {
"CPU": self.cpu, "CPU": self.cpu,
"MemoryMB": self.memory "MemoryMB": self.memory
} }
} }
# Add environment variables if specified # Add environment variables if specified
if self.env_vars: if self.env_vars:
task["Env"] = self.env_vars task["Env"] = self.env_vars
# Create network configuration # Create network configuration
network = {} network = {}
if self.ports: if self.ports:
network["DynamicPorts"] = self.ports network["DynamicPorts"] = self.ports
task["Config"]["ports"] = [port["Label"] for port in self.ports] task["Config"]["ports"] = [port["Label"] for port in self.ports]
# Create the full job specification # Create the full job specification
job_spec = { job_spec = {
"ID": self.job_id, "ID": self.job_id,
"Name": self.name or self.job_id, "Name": self.name or self.job_id,
"Type": self.type, "Type": self.type,
"Datacenters": self.datacenters, "Datacenters": self.datacenters,
"Namespace": self.namespace, "Namespace": self.namespace,
"TaskGroups": [ "TaskGroups": [
{ {
"Name": "app", "Name": "app",
"Count": self.count, "Count": self.count,
"Tasks": [task], "Tasks": [task],
"Networks": [network] if network else [] "Networks": [network] if network else []
} }
] ]
} }
return job_spec return job_spec
class ClaudeJobResponse(BaseModel): class ClaudeJobResponse(BaseModel):
"""Response model for Claude job operations""" """Response model for Claude job operations"""
success: bool = Field(..., description="Whether the operation was successful") success: bool = Field(..., description="Whether the operation was successful")
job_id: str = Field(..., description="The ID of the job") job_id: str = Field(..., description="The ID of the job")
status: str = Field(..., description="Current status of the job") status: str = Field(..., description="Current status of the job")
message: str = Field(..., description="Human-readable message about the operation") message: str = Field(..., description="Human-readable message about the operation")
details: Optional[Dict[str, Any]] = Field(None, description="Additional details about the job") details: Optional[Dict[str, Any]] = Field(None, description="Additional details about the job")
class McpRequest(BaseModel):
"""Model for MCP protocol requests"""
id: str = Field(..., description="Unique identifier for the request")
type: str = Field(..., description="Type of request")
content: Dict[str, Any] = Field(..., description="Request content")
class McpResponse(BaseModel):
"""Model for MCP protocol responses"""
id: str = Field(..., description="Unique identifier matching the request")
type: str = Field(..., description="Type of response: ack, result, error, done")
content: Optional[Dict[str, Any]] = Field(None, description="Response content")

View File

@ -1,9 +1,10 @@
fastapi fastapi
uvicorn uvicorn
python-nomad python-nomad
pydantic pydantic
python-dotenv python-dotenv
httpx httpx
python-multipart python-multipart
pyyaml pyyaml
requests requests
fastapi_mcp